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a b s t r a c t

An illumination-invariant background model for detecting objects in dynamic scenes is proposed. It is
robust in the cases of sudden illumination fluctuation as well as burst motion. Unlike the previous works,
it uses the co-occurrence differential increments of multiple pixel pairs to distinguish objects from a
non-stationary background. We use a two-stage training framework to model the background. First,
joint histograms of co-occurrence probability are employed to screen supporting pixels with high
normalized correlation coefficient values; then, K-means clustering-based spatial sampling optimizes
the spatial distribution of the supporting pixels; finally the background model maintains a sensitive
criterion with few parameters to detect foreground elements. Experiments using several challenging
datasets (PETS-2001, AIST-INDOOR, Wallflower and a real surveillance application) prove the robust and
competitive performance of object detection in various indoor and outdoor environments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Detecting moving objects plays a very important role in an
intelligent surveillance system. It is often integrated with various
tasks, such as tracking objects [1,2], recognizing their behaviors
[3,4] and alerting when abnormal events occur [5]. However,
object detection suffers from non-stationary scenes in surveillance
videos, especially in two potentially serious cases: (1) sudden
illumination variation, such as outdoor sunlight changes and
indoor lights turning on/off; (2) burst physical motion, such as
the motion of indoor artificial objects, which include fans, escala-
tors and auto-doors. If the actual background includes a combina-
tion of any of these factors, it becomes even more difficult to
perform detection. State-of-the-art algorithms [6–10] can handle
gradual illumination changes by updating the statistical back-
ground models progressively as time goes by. In practice, however,
this kind of model update is usually relatively slow to avoid
mistakenly integrating foreground elements into the background
model, making it difficult to adapt to sudden illumination changes
and burst motion.

In this study, we propose a novel framework to build a back-
ground model for object detection, which is brightness-invariant
and able to tolerate burst motion. We name it Co-occurrence
Probability-based Pixel Pairs (CP3). It is inspired by the previous
work in [11,12]. In the work of Haralick et al. [11], gray-level co-
occurrence matrices (GLCM) were employed to measure the
spatial co-occurrence of pixels to produce an image texture feature
(Haralick feature). In the work of Hashimoto and Saito [12], pixels
with low spatial co-occurrence probability and with high temporal
co-occurrence probability were preferentially extracted as spa-
tially distinctive and temporally stable features to reduce compu-
tational complexity for template matching. In this study, in order
to model the dynamic background, spatial pixel pairs with high
temporal co-occurrence probability are employed to represent
each other by using the stable intensity differential increment
between a pixel pair which is much more reliable than the
intensity of a single pixel, especially when the intensity of a single
pixel changes dramatically over time. A pixel pair consists of each
pixel itself (called target pixel hereafter) and a selected pixel
(called supporting pixel hereafter). As a pixel-wise background
model, the target pixel P refers to all pixels in a scenario. The
supporting pixels are neither arbitrary pixels in the scene, nor pre-
defined fixed local structures around each target pixel; instead, the
supporting pixels are selected based on their statistical stability
with the target pixels.
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The remainder of this paper is organized as follows. In the
next section, some related works are discussed. Section 3 details
the background model. Section 4 presents the object detection
procedure. Section 5 presents the experimental results, and
Section 6 concludes the main contributions of this work.

2. Related work

Since observations of the background in image sequences can
be considered stochastic events, many statistical approaches have
been employed to model effective backgrounds. The former back-
ground modeling approaches can be classified into two categories:
(1) independent pixel-wise modeling, which employs the statis-
tical processing of time-domain observations to each pixel.
(2) Spatial-dependence modeling, which employs principles to
exploit spatial-dependence among pixels to build a local or
global model.

Most of the earlier background modeling approaches tend to
fall into the first category. Wren [6] modeled the observations
(YUV) of each pixel as a single Gaussian probability density
function. To cope with periodic moving background patterns, the
Gaussian mixture model (GMM) [7,13] was proposed. Elgammal
[8] employed kernel density estimation (KDE) as a data-driven
modeling method. Since KDE is a non-parametric model, it is
closer to the real probability distribution than GMM. Hidden
Markov models (HMMs) [14,15] have also been applied to model
the background; topology free HMMs were described and several
state splitting criteria were compared in the context of background
modeling in [14], and a non-adaptive three-state HMM was used
to model the background in [15]. The recent notable pixel-wise
method by Kim [9] presented a real-time algorithm, which
sampled background pixel values and quantized them into com-
pressed codebooks (CBs). To improve the processing efficiency of
the codebooks, Guo [16] presented a hierarchical scheme. All the
above methods use a learning rate function for updating the
background model online. However, because none of these meth-
ods is free from erroneous updating, they have a well-known
trade-off problem: with a low learning rate, they can not adapt to
sudden changes of illumination, e.g., turning on/off a light, while
with a high learning rate, slowly moving objects or temporarily
stopped objects will be detected as background.

The second category uses spatial information to exploit the spatial
dependencies of pixels in the background. Matsuyama [17] proposed
a regional block matching method against varying illumination, and
Seki [18] proposed a co-occurrence-based block correlation method.
The above two methods can only yield coarse region-level detection.
Toyama et al. [19] proposed a three layers algorithm inwhich Weiner
filters were employed. It used region and frame-level information to
verify the pixel-wise background model. Oliver [20] employed eigen-
space decomposition in which the background was modelled by the
eigenvectors corresponding to the largest eigenvalues. Sheikh [10]
used the joint representation of image pixels in a local spatial
distribution (proximal pixels) and colour information to build both
background and foreground KDE models competitively in a decision
framework. Monnet [21] and Zhong [22] built an auto-regressive
moving average (ARMA) model in dynamic scenes, which is used to
incrementally learn (using PCA) and then predict motion patterns in
the scene. Heikkilä and Pietikäinen [23] used a local binary pattern
(LBP) to subtract the background and detect moving objects in real
time. This method models each pixel as a group of adaptive LBP
histograms that were calculated over a predefined circular region
around the pixel. Similarly, the statistical reach feature (SRF) [24]
builds a local texture model for each target pixel to be brightness-
invariant. A recent spatial-dependence approach [25] utilized a
tensor subspace learning algorithm to represent spatial correlations

between pixel values, and modeled appearance changes by incre-
mentally learning a tensor subspace representation by adaptively
updating the sample mean and an eigenbasis for each unfolding
matrix of the tensor.

In our previous research, we proposed a background model
called grayscale arranging pairs (GAP) [26,27] which falls into the
second category. GAP employed an alignment of supporting pixels
for the target pixel which held a stable intensity subtraction in
training frames without any restriction of locations. The intensity
subtraction of the pixel pairs allowed the background model to
tolerate noise and be illumination-invariant. However, this fixed
intensity subtraction influenced the sensitivity of the background
model, especially when the dynamic range was compressed due to
low illumination; it was also not an optimal way to search for
supporting pixels by using a fixed intensity subtraction in that
most co-occurrence pixels were not considered. In addition, the
GAP method mainly focused on illumination-invariance, so that
the dynamic background caused by burst motion was not dis-
cussed sufficiently. In this study, the proposed method addresses
these open problems. Compared with GAP, the proposed method
employs a co-occurrence histogram to describe the relationship of
a pixel pair, which is free from any intensity differences, and
calculates normalized correlation coefficients for measuring the
degree of co-occurrence which can deal with a dynamic back-
ground. It also introduces a spatial clustering operation to select
optimal supporting pixels and then provides a more accurate
parameterized detection criterion instead of a fixed double-sided
threshold.

3. Background modeling

The algorithm is described for gray-scale imagery; however, it
can also be used for colour or multi-modality imagery with minor
modification. Fig. 1 shows the fundamental definitions of the
image data. Suppose we are given a training image sequence
B¼ I1; I2;…; ITf g with a total of T images, and each image has
M¼ U � V pixel positions. In the three-dimensional space
Γ ¼ ðu; v; tÞj1rurU;1rvrV ;1rtrT

� �
, we have U � V � T

intensity values within a gray-scale level range ½0; L�1�. In the
following, the intensities over time at each pixel position are
regarded as samples from a stochastic process. We define P as a
target pixel at location (u, v). The location of P varies to cover all
pixels of a frame, and its intensity sequence over time is denoted
as fptðu; vÞgt ¼ 1;2;…;T . In the same way, we define Q ðu0; v0Þ as an
arbitrary pixel with intensity sequence fqtðu0; v0Þgt ¼ 1;2;…;T at loca-
tion ðu0; v0Þ. For simplicity, we have omitted most of the (u, v) and
ðu0; v0Þ in the following discussion.

Fig. 1. Fundamental definitions of the image data. Target pixel P and an arbitrary
pixel Q with their intensity sequence over time pt and qt.
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3.1. Bivariate statistical property of a pixel pair

To analyze the bivariate statistical property of a pixel pair, the
joint histogram of intensity for a pixel pair is defined.1 The i, jth
bin of the joint histogram for an arbitrary pixel pair ðP;Q Þ in T
training images can be expressed as

hPQ ði; jÞ ¼ ∑
T

t ¼ 1
δðpt ; qt ; i; jÞ; ð1Þ

where δðpt ; qt ; i; jÞ represents the two-dimensional discrete Kronecker
delta function:

δðpt ; qt ; i; jÞ ¼
1 if ðpt ¼ iÞ \ ðqt ¼ jÞ
0 otherwise

:

�

The bins hPQ ði; jÞ corresponding to i; jA ½0; L�1� represent the
co-occurrence probability of pt ¼ i and qt ¼ j. The joint histogram
hPQ can be written compactly as an ordered array,

hPQ ¼ fhPQ ði; jÞgL�1
i;j ¼ 0: ð2Þ

As an example using PET2001-dataset3 camera1 (ftp://ftp.pets.rdg.
ac.uk/pub/PETS2001/DATASET3/) shown in Fig. 2, we selected a
target pixel P located on the “road”, and four arbitrary pixels S, G,
W and R from the “sky”, “grass”, “wall” and “road” respectively.
The section hPQ ði; jÞ40 of joint histograms are illustrated as a few
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Fig. 2. Co-occurrence joint histograms use PETS2001-dataset3 camera1 training dataset with 5563 frames (T¼5563) and the gray-scale level range is [0, 255] (L¼256).
(a) Location of the target pixel P selected from the road, and four arbitrary pixels S, G, W, and R, selected from the sky, grass, wall, and road respectively. (b) The average
intensity change of each frame in this scenario. (c)–(f) The joint histograms hPS , hPG , hPW , and hPR of each pixel pair.

1 CP3 can also be called the pixel correlation model. However, we call it
Co-occurrence Probability-based Pixel Pairs because it is designed on the basis of
co-occurrence histogram of a pixel pair, and the following calculations also rely on
the probability of the histogram bins.
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representable examples in Fig. 2(c–f). hPS shows the most irregular
distribution, while hPG, hPW and hPR reveal a more regular
distribution. It is obvious that the most regular distribution is
the histogram hPR shown in Fig. 2(f), and its co-occurrence bins are
parallel to a diagonal line running downwards through the
histogram. The corresponding intensity time sequences of the
four pixel pairs are shown in Fig. 3. In Fig. 3(b and c), the intensity
changes show an unexpected phase difference between the two
time sequences, which disturbs the stable distribution of the joint
histograms hPG and hPW shown in Fig. 2(d, e). For example, when a
light source is shifting repeatedly, the shift speed would vary
between different times, which would cause such a phase differ-
ence. The corresponding joint histograms in Fig. 2(d and e)
indicate that, under illumination fluctuation, the intensity rela-
tionships of the pixel pair ðP;GÞ and ðP;WÞ follow multiple varying
modes, which essentially releases the relationship constraint of
the pixel pair. If we employ such a pixel pair to model the
background, the sensitivity to detect objects will be low, because
the background model would be so flexible that a large range of
intensity pairs would gather to model illumination changes. On
the other hand, plenty of pixels have a simpler and more explicit
statistical relationship with the target pixel as shown by the pixel
pair ðP;RÞ in Fig. 2(f). Therefore, R can be selected as a supporting
pixel QP to observe the intensity of P even under illumination
changes. The training stage of the proposed method starts from
selecting supporting pixels QP for each target pixel P, the asso-
ciated calculation procedure is presented in the next subsection.

As a grayscale/single-channel image, the change in pixel
intensity is proportional to the illumination increment. Hence,
the statistical linearity of a pixel pair reduces to a stable intensity
differential increment Δðpt ; qtÞ just as the example in Fig. 2(f), in
which the slope of the regression line approaches 1. For one target

pixel P, it is natural to expect that one or more pixels QP which
maintain a stable intensity differential increments Δðpt ; qtÞ during
training frames, exist even though P and QP might be at quite
different locations. When detecting objects under a dynamic
background, both the object occupation and the illumination
change (or other forms of dynamics) can affect on the current
intensity of a target pixel P. A background model only modeling
the independent intensity change of P cannot distinguish the
object from the dynamic background. Instead, QP pixels could be
employed to estimate the intensity of the target pixel P in a
current detection frame, i.e. p̂ ¼ Δðpt ; qtÞþq, where q is the
intensity of QP in a current detection frame. When the illumination
changes on a target pixel P but no object exists on it, p̂ simulta-
neously changes with q, so that the current intensity p will fall into
the estimated range p̂, then P will be considered to be a back-
ground element. If P is occupied by an object, the current intensity
p will be out of the estimated range p̂, then P will be considered to
be occupied by an object. In our training stage, Δðpt ; qtÞ is modeled
as a single Gaussian model, with a unique mean and variance.
Using a Gaussian model allows the pixel pair to tolerate noise.
More importantly, for different pixel pairs, the mean of Δðpt ; qtÞ
could vary and the noise effect could also be at different ranges, so
the mean and variance of a Gaussian calculated on specific pixel
pair provide an accurate statistical constraint between them.

For robust detection, it is necessary to maintain a sufficient
number of supporting pixels, denoted fQP

kgk ¼ 1;2;…;K , where K is the
total number of supporting pixels. In our detection stage, a double
layer probability-based decision is used to detect objects: the first
layer is to identify whether an individual pixel pair ðP;QP

k Þ matches
its Gaussian model; and the second layer is to observe a matched
ratio, i.e. to count the number of pixel pairs ðP; fQP

kgÞ that can
match their Gaussian model from total K pixel pairs for each P.
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Fig. 3. Intensity change of target pixel P and four arbitrary pixels corresponding to Fig. 2(b–e).
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Once the matched ratio decreases, P will be regarded as a fore-
ground element. The associated calculation procedure is presented
in Section 4.

3.2. Statistical measurement of co-occurrence pixel pairs

In this section, we introduce how to determine the supporting
pixels from M�1 candidate pixels for each target pixel P. For an
arbitrary pixel pair ðP;Q Þ, the one-dimensional histograms corre-
sponding to their marginal probability distributions are

hPðiÞ ¼ ∑
L�1

j ¼ 0
hPQ ði; jÞ ð3Þ

and

hQ ðjÞ ¼ ∑
L�1

i ¼ 0
hPQ ði; jÞ: ð4Þ

The expectation values of P and Q are EðptÞ ¼ T �1∑L�1
i ¼ 0ihPðiÞ and

EðqtÞ ¼ T �1∑L�1
j ¼ 0jhQ ðjÞ respectively, and their variances are

σ2pt ¼
1
T

∑
L�1

i ¼ 0
½i�EðptÞ�2hPðiÞ ð5Þ

and

σ2qt ¼
1
T

∑
L�1

j ¼ 0
½j�EðqtÞ�2hQ ðjÞ: ð6Þ

The covariance of a ðP;Q Þ pair can be defined as follows:

CP;Q ¼ 1
T

∑
L�1

i ¼ 0
∑
L�1

j ¼ 0
½i�EðptÞ�½j�EðqtÞ�hPQ ði; jÞ: ð7Þ

CP;Q 40 means P and Q has positive covariance value, which
indicates they potentially have a high co-occurrence probability.
We call this kind of pixel pair co-occurrence pixel pair hereafter.

In order to measure the independent co-occurrence quantitatively,
we utilize Pearson product-moment correlation coefficient:

γðP;Q Þ ¼
CP;Q

σpt � σqt
ð8Þ

where σpt and σqt are the standard deviations of P and Q
respectively. Eq. (8) is used to estimate the linear dependence of
spatial pixel pairs, and γðP;Q Þ is 71 in the case of a perfect positive/
negative linear correlation. This normalized correlation coefficient
does not involve the restraint between EðptÞ and EðqtÞ. Namely, the
pixels Q with any mean values are likely to have large γðP;Q Þ with P.
Fig. 4 shows four examples of γðP;Q Þ using PETS2001-dataset3, the
black crosses stand for the location of P, and the red coloured area
have high correlation coefficient values.

In practice, Eq. (8) can be calculated based on a correlation
matrix instead of calculating pixel-by-pixel serial processing. The
correlation matrix is the covariance matrix of the standardized
random variables ~pt ¼ pt=σðptÞ. With a total of M¼ U � V pixel
positions, the image sequence can be arranged progressively as a
column vector set χM ¼ f ~ptðmÞgm ¼ 1;2;…;M . The correlation matrix of
size M �M is

Υ ðχMÞ ¼ CðχM ; ðχMÞT Þ

¼

~ptð1Þ�Eð ~ptð1ÞÞ
~ptð2Þ�Eð ~ptð2ÞÞ

⋮
~ptðMÞ�Eð ~ptðMÞÞ

2
66664

3
77775 �

~ptð1Þ�Eð ~ptð1ÞÞ
~ptð2Þ�Eð ~ptð2ÞÞ

⋮
~ptðMÞ�Eð ~ptðMÞÞ

2
66664

3
77775

T

ð9Þ

where Cð�Þ is the covariance operation. The correlation matrix is
symmetric so that each row and column of the Υ ðχMÞ is an array of
γðP;Q Þ for each Pðu; vÞ.

For each target pixel Pðu; vÞ, M�1 values of γðP;Q Þ need to be
calculated at different locations ðu0; v0Þ. Then Qn corresponding to
the highest N components in the array γðP;Q ðu0 ;v0 ÞÞ can be selected as

0.6

0.7

0.8

0.9

1

Fig. 4. Diagram of γðP;Q Þ using PETS2001-dataset3. The black cross markers are the locations of P. (For interpretation of the reference to color in this figure caption, the reader
is referred to the web version of this paper.)
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the candidates of preferred supporting pixels, namely

fQng ¼ fQ ðu0; v0ÞjγðP;Q Þ4 �γg; n¼ 1;2;…;N; ð10Þ

where N is the number of candidate supporting pixels Qn for each
target pixel P, and �γ is the lower limit for the co-occurrence pixel
pair. �γ is an adaptive threshold depending on the variation
characteristic of P, which is discussed in Section 3.3.

3.3. Lower limit for a co-occurrence pixel pair

Due to sensor noise and encoding noise, any pt and qt cannot
maintain a full co-occurrence relation. Therefore, the lower limit �γ
for choosing the high co-occurrence pixel pairs is a key parameter.
This parameter is generally solved through preparatory experi-
ments using typical samples of target images as a training dataset.
To estimate the lower limit more reasonably, we need a theoretical
formalization as a guidance with a natural prospective view.

Our approach to formalization is to assume that, pt ¼ p0tþe1
and qt ¼ qt

0 þe2, where p0t and qt
0 are the intensities without any

noise; e1 and e2 are the additive noise, independent of each other
but with the same density function N ð0; σ2nÞ. Then we assume p0t
and qt

0 have a perfect positive linear correlation with a constant
b¼ Δðp0t ; qt 0Þ, namely p0t ¼ qt

0 þb, and analyse �γ as a statistic for
investigating how large degradation is raised by the noise. For the
computation of γðP;Q Þ, disconcordance between pt and qt can
degrade the �γ value. The correlation coefficient �γ can be repre-
sented by the next expression according to Eq. (8),

�γ ¼ Cðp0tþe1; p0tþe1�e2�bÞ
σp0t þe1 � σp0t þe1 �e2 �b

: ð11Þ

According to the properties of covariance and variance, the above
formula is developed as

�γ ¼
σ2p0t

þσ2n

σp0t þe1 � σp0t þe1 �e2 �b
: ð12Þ

When p0t is independent of e, Eq. (12) can be rewritten as

�γ ¼
σ2p0t

þσ2n

½ðσ2p0t þσ2nÞðσ2p0t þ2σ2nÞ�1=2

¼
σ2p0t

þσ2n

σ2p0t
þ2σ2n

 !1=2

ð13Þ

�γ ¼
σ2pt

σ2pt þσ2n

 !1=2

¼ 1þ σ2n
σ2pt

 !�1=2

: ð14Þ

When the noise level is significantly smaller than the dynamic
range of pt, namely σ2p0t

cσ2n, Eq. (13) approximates to 1, which
reveals that with large-scale intensity variation in the training
dataset, the noise effect for correlation measurement can be
reduced. On the other hand, if the intensities of P keep steady,
namely σ2p0t

-0, Eq. (13) will level off to 1=
ffiffiffi
2

p
, then the candidate

supporting pixels can be selected from the stationary elements of
the background. We directly use Eq. (14) instead of Eq. (13), in
which σ2pt can be calculated based on Eq. (5) and σ2n can be
determined according to the noise level of the image sequence.
From the theoretical analysis, the lower limit can be determined
from the comprehensive conditions combining with σ2n which can
be easily provided by users and a computable σ2pt . Fig. 5 shows four

Fig. 5. Diagram of selecting QP
k using K-means in spatial domain. The black markers correspond to the P pixels in Fig. 4(a–d). The different-coloured areas, which stand for the

clustering subsets, come from the high co-occurrence pixel Qn with total N pixels. The blue circles are the centres of each clustering subset, which are selected as QP
k. In these

examples, K¼10. (For interpretation of the reference to color in this figure caption, the reader is referred to the web version of this paper .)
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example of selected Qn (the coloured area), which demonstrate
that the rules to choose Qn according to the lower limit �γ allow the
spatial distributions of Qn to follow irregular illumination variation
patterns.

3.4. Background model of pixel pairs

In this section, we discuss how to produce a limited number of
supporting pixels QP

k and build the background model.
In Section 3.3, the selected Qn using �γ resulted in an indeter-

minate number of N. To perform an executable algorithm, we need
to confirm a series of a limited number of supporting pixels. As the
spatial distribution of Qn follows irregular patterns, we cannot
implement any former spatial interpolation approach to select
high representative QP

k from Qn. To solve this issue, K-means
clustering is employed to partition Qn into K clusters, depending
on the nearest clustering centres [28]. With clustering conver-
gence, the pixel that is closest to the k-th cluster centre is selected
as a unique QP

k. The details of K-means clustering for optimizing
the spatial distribution is described in the Appendix. Four demon-
strations of the QP

k optimization are shown in Fig. 5 in which K¼10.
It is reasonable to assume that selecting more supporting pixels
will contribute to a robust result. The supporting pixels are
essentially a group of statistical samples. Theoretically speaking,
a larger number of samples would estimate a more robust
statistical model. On the other hand, the number of supporting
pixels directly affects the computation cost for object detection.
This issue is discussed in the form of quantitative experiments in

Section 5.2. Without loss of generality, the number of K for a given
video scene is set at 10 for the experimental comparison in
Sections 5.1 and 5.3.

Each QP
k keeps a bivariate differential increment with P,

pt �N ðqtðkÞ þb; σ2ε Þ; ð15Þ
where σ2ε follows a normalized distribution ε�N ð0; σ2ε Þ. We use
this Gaussian function to model the intensity distribution of a
pixel pair instead of a Gaussian mixture model [7] because we find
that a single Gaussian works better since the selected pixel pair
keeps highly steady difference except for noise. We calculate a
noise standard deviation estimation as follows,

σ̂ ε ¼ σpt �qtðkÞ ; ð16Þ
and the estimation of the differential increment b is,

b̂ ¼ E½pt�qtðkÞ�: ð17Þ
After the training step, the above two parameters σ̂ ε, b̂ are

recorded for the following detection procedure. The background
model is a look-up table (LUT) consisting of ½u0; v0; σ̂ ε; b̂� for
fQP

kgk ¼ 1;2;…;K . The pseudo-code of CP3 for background modeling
is shown in Algorithm 1.

Algorithm 1. CP3 for background modeling.

Data: B¼ I1 ; I2 ;…; ITf g with total T images, and σ2n.

Result: look-up table of fQP
k gk ¼ 1;2;…;K consisting of ½u0 ; v0 ; σ̂ ε ; b̂�.

Initialization:
Build the vector set χM ¼ f ~ptðmÞgm ¼ 1;2;…;M .

(I) Compute correlation matrix:

 

 

-0.5

0

0.5

 

 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 

 

-0.5

0

0.5

 

 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
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of a selected target pixel in (a-d).
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ΥðχM Þ ¼ CðχM ; ðχM ÞT Þ.
(II) Select supporting pixels:

for each Pðu; vÞ do
ðaÞ Compute �γ based on Eq:ð14Þ:
ðbÞ fQngn ¼ 1;2;…;N ¼ fQ jγðP;Q Þ4 �γ g:
ðcÞ K�means sampling in spatial domain fQng ) fQP

k gk ¼ 1;2;…;K :

ðdÞ Compute and record ½u0 ; v0 ; σ̂ ε ; b̂� for fQP
k gk ¼ 1;2;…;K :

666666664

To train the background model of a scene, a training dataset
including the dynamic background of the scene is necessary. In this
work, we use three public datasets (PETS2001-dataset3 camera1,
AIST-INDOOR, Wallflower), and each of them provides a separate
training and detection dataset. We use each specified training and
detection dataset for training and detection respectively.

3.5. Moving background case

In the case of a moving background, the moving parts cover
several pixels in the same frame that also present co-occurrence.
Therefore, we can search for the supporting pixels QP

k if the
intensity changes of the pixel pairs are simultaneous. Using the
proposed method to evaluate the intensity changes caused by a
moving background makes no difference within the case of
illumination variation. Hence, the earlier discussion based on
illumination change is also appropriate for the case of a moving
background.

A typical motion pattern in backgrounds is burst motion. This
motion pattern can be described as a moving part of the background
following regular directions but with an irregularly scheduled occur-
rence; hence, its speed and frequency can not be directly predicted.
Plenty of moving background elements can be simplified into burst

Fig. 7. Examples of the mixture of burst motion and sudden illumination change. (a) Location of the target pixels Pð70;180Þ and p0ð170;180Þ. (b) γðP;Q Þ of Pð70;180Þ.
(c) Partial enlarged drawing of (b). (d) The supporting pixels of (c). (e) γðP;Q Þ of P

0ð170;180Þ. (f) The supporting pixels of (e).
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motion. For example, tree swinging caused by random wind, fan
speed change, dynamic horizontal lines of a displayer caused by its
refresh rate, and auto-induction escalators and doors, all of which
often appearing in outdoor/indoor surveillance scenes are examples of
the burst motion. In general, applying independent pixel-wise meth-
ods (such as GMM [7] or Codebook [9]) to deal with motion
backgrounds only employ pixel's history by continuously updating
background, using a fixed learning rate as the background updating
criterion; these background models are sensitive to burst motion. Our

proposed method is a frequency and speed adaptive background
model, which employs the spatial-dependence of pixel pairs to keep a
stable differential increment regardless of the intensity of a single
pixel under any frequency or speed of burst motion. The selected pixel
pairs convert the non-stationary scene to a stable background model
for offsetting the patterns of motion without any learning rate. Fig. 6
shows four examples of various burst motion backgrounds without
severe illumination change. Fig. 6(a) and (b) is from the Wallflower
dataset [19], and contain a waving tree and a cathode ray tube

Fig. 8. The mean metrics of GMM, KDE, GAP and proposed CP3 using PETS2001-dataset3 camera1. (a) Precision, (b) Recall and (c) F-measure.
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Fig. 9. (a) Precision, (b) Recall and (c) F-measure of CP3, GAP, KDE and GMM of PETS2001-dataset3 camera1. (d) The average intensities over time through 301 testing frames.

D. Liang et al. / Pattern Recognition 48 (2015) 1374–13901382



displayer respectively; Fig. 6(c) and (d) contains an escalator in
operation and a fan in operation respectively, which can be down-
loaded from the author's web links: http://ssc-lab.com/ liang/CP3_pro
ject/escalator.rar and http://ssc-lab.com/� liang/CP3_project/fan.rar.
Compared with the case of severe illumination change shown in
Fig. 4, γðP;Q Þ appear a part of negative values along the vertical dir-
ection of the movement locus shown in Fig. 6. Fig. 7 shows examples
of the mixture case of burst motion and sudden illumination change
using AIST-INDOOR dataset (http://ssc-lab.com/� liang/CP3_project/
AIST_INDOOR_DATASET.rar). In this scene, a target pixel repeatedly
passes by an auto-induction door while a light turning on. The
supporting pixels with high co-occurrence are located along the
vertical direction of the door to meet the simultaneity of its burst
motion (shown in Fig. 7(b–d)), rather than around a regular neighbor-
hood. As a comparison, Fig. 7(e and f) shows the case of a target pixel
in a static part of the same scene.

3.6. Accelerated background modeling

In Section 3.2, in order to calculate γðP;Q Þ for each P in a training
dataset with M¼ U � V pixel positions and T frames, the compu-
tational complexity for Eq. (9) is OðTM2Þ. In contrast, in the
independent pixel-wise models [7,8], it is unnecessary to consider
spatial dependence, so the computational complexity is only O
(TM) in the training stage. With the same memory cost, the time

consumption of our proposed method is M�1 times higher than
independent pixel-wise models.

Hoping to have a faster version of background modeling, we
modified Eq. (9) using a hierarchical structure of a covariance-
matrix: χM can be sampled uniformly using an integral sample
interval Λ, the sub-set χ½M=Λ2 � � χM; thus, we have

Υ ðχ½M=Λ2 �Þ ¼ Cðχ½M=Λ2 �; ðχ½M=Λ2�ÞT Þ: ð18Þ

In order to cover all the target pixels, we have Λ2 hierarchical
correlation matrices Υ ðχ½M=Λ2 �

λ Þ and

χ½M=Λ2�
λ ¼ f ~ptðωΛ2þλÞgω ¼ 1;2;…;½M=Λ2�; ð19Þ

where λ¼ 1;2;…;Λ2. In this way, both the memory cost and time
consumption is OðTM2Λ�2Þ, which means the hierarchical struc-
ture of a covariance-matrix reduces computational complexity by
Λ2. The speed-up algorithm is based on the pixel sampling
operation, which reduces the number of candidates of supporting
pixels. However, we are willing to accept the possible loss in
information, because it allows us to achieve high speed processing
when dealing with high resolution surveillance videos. We recom-
mend that the high resolution applications choose the accelerated
background modeling, and the low data-volume applications
choose the standard CP3 algorithm. The experimental discussion
of the sample interval Λ is presented in Section 5.3.

Fig. 10. CP3, GAP, KDE and GMM using PETS2001-dataset3 camera1.
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4. Object detection

The proposed background model converts the object detection
problem into a competitive binary classification problem [29] by
comparing the intensity pairs ðP; fQP

kgk ¼ 1;2;…;K Þ in turn. It includes
two stages: (1) to identify the normal/abnormal state of the pixel
pair ðP;QP

k Þ; (2) to identify the foreground/background state of P.
For each pixel pair ðP;QP

k Þ, the binary function βðQP
k Þ for

discriminating the normal/abnormal state can be estimated as
the following condition according to Eq. (15):

βðfQP
kgk ¼ 1;2;…;K Þ ¼

1 if J ðp�qkÞ� b̂ÞJoC � σ̂ ε

0 otherwise

(
ð20Þ

where p and qk are the intensity values of P and QP
k in the input frame

J respectively, and C is a constant. It is important to note that using
the bivariate normal distribution of the differential increment of the
pixel pair is different from using the traditional single Gaussian pdf-
based identification function of a single pixel [6]; in a single Gaussian
pdf-based method, the ideal threshold should be changed following
the latest intensity variation. For example, the standard deviation
should be larger when the illumination fluctuations become more
intense. In our proposed version, the stable differential increment of
a pixel pair provides an adaptive observation so that σ̂ ε is only related

to the noise acting on each pixel. Therefore, we do not need an
adjustable C to adapt to changes caused by illumination changes or
backgroundmotion. The constant C can be set from 1.0 to 3.0 in order
to contain approximately an area of 68–99% of its probability density
function. In addition, the recording of σ̂ ε and b̂ from the modeling
stage provides a more accurate parametrized criterion than a fixed
double-sided threshold in GAP method [26]. This will be confirmed
in the experiment section.

After identifying the normal/abnormal state of the pixel pair, K
bits of βðQP

k Þ are produced for the following decisions of each P. In
order to classify whether P is a foreground pixel, the probability
ξðPÞ of a pixel being in the background is defined as,

ξðPÞ ¼ 1
K

∑
K

k ¼ 1
βðQP

k Þ: ð21Þ

Target pixel P in the input image is considered as a foreground pixel
only if ξðPÞoPF, where PF is a global threshold that can be adjusted
to achieve the desired result. Otherwise, P is considered a back-
ground pixel. For instance, if PF¼0.5, and the number of abnormal QP

k

is larger than K=2, namely, ξðPÞo0:5, then P should be a foreground
pixel in the input frame J. The procedure for calculating ξðPÞ for every
target pixel is performed by a bits counting operation, along with a
look-up table for calculating βðQP

k Þ, which is easy to implement on

Fig. 11. CP3, GAP, KDE and GMM using AIST-INDOOR dataset.
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any conventional hardware. The pseudo-code of the object detection
is shown in Algorithm 2.

Algorithm 2. Object detection.

Data: Testing frame J, parameters C and PF.
Result: Foreground=Background
for Each pixel P in J do
ðIÞ Initialize :

Load look�up table � ½u0; v0; σ̂ ε; b̂� of fQP
kgk ¼ 1;2;…;K :

ðIIÞ Pixel pair identification :

for k¼ 1;2;…;K do

if J ðp�qkÞ� b̂ÞJoC � σ̂ ε then

j βðQP
k Þ ¼ 1

else
⌊ βðQP

k Þ ¼ 0

66666664
ðIIIÞ Object identification :

Compute ξðPÞ ¼ 1
K
∑K

k ¼ 1βðQP
k Þ:

if ξðPÞoPF ; ð0oPFo1Þ then
j P-Foreground

else
⌊ P-Background

666666666666666666666666666666666664

5. Experimental results

To evaluate the performance of the proposed method, we
tested it on video datasets including a variety of indoor and
outdoor environments for both qualitative and quantitative ana-
lysis. For all the experiments, σ2n ¼ 100 in the training stage and the
two thresholds were set as C¼2.5 and PF¼0.5 respectively in the
detection stage.

For quantitative analysis, the three evaluation metrics, Precision
(also known as positive predictive value), Recall (also known
as sensitivity) and F-measure were utilized. Precision, Recall and
F-measure are widely used in pattern recognition and information

extraction with binary classification [30,31]. Since pixel-level
object detection is a typical binary classification problem, the
three metrics also have been used for the quantitative analysis of
object detection [10,26,32]. Precision can be seen as a measure of
exactness or fidelity, and Recall can be seen as a measure of
completeness of foreground,

Precision¼ TP
TPþFP

ð22Þ

and

Recall¼ TP
TPþFN

ð23Þ

where TP, FP and FN stand for the number of true positive pixels,
false positive pixels and false negative pixels, respectively. F-
measure is a weighted harmonic mean of the Precision and Recall,

F ¼ 2Precision � Recall
PrecisionþRecall

: ð24Þ

5.1. Experimental comparison with other approaches

We compared our algorithm with three methods: (1) GMM
[7,13] method, which is a standardized method among indepen-
dent pixel-wise models; (2) Sheikh's KDE method [10] as a
representative method among spatially dependent models, which
is different from the original nonparametric Kernel Density Esti-
mation method (KDE) in that it employs KDE over the joint
domain(location) and range (intensity) representation of image
pixels; (3) our previous method GAP [26]. The parameters for the
GMM algorithm were set as defaults in the OpenCV tool; the
parameters for Sheikh's KDE algorithm were set according to the
author's recommendations in [10], and the size of model is
[26,21,31]; In GAP method, WG ¼ 20;WP ¼ 0:9;WH ¼ 0:3.

First, we use the sequences from PETS2001-dataset3 camera1
to test the outdoor scenes captured under severe illumination
fluctuation. The sudden partial illumination variations caused by
moving clouds are obvious in this scene which are clearly

Fig. 12. The mean metrics of GMM, KDE, GAP and proposed CP3 using AIST-INDOOR dataset. (a) Precision, (b) Recall and (c) F-measure.
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represented as average intensity change shown in Fig. 9(d). The
dataset PETS2001-dataset3 camera1 includes a total of 5563
frames for training and 5336 frames for detection. The available
ground truth data of PETS2001 allows us to complete the compar-
ison (http://limu.ait.kyushu-u.ac.jp/en/dataset/). The average Pre-
cision, Recall and F-measure of the four methods are shown in
Fig. 8. The Precision, Recall and F-measure over time of the four
methods are shown in Fig. 9(a–c). Clearly, both CP3 and GAP show
a higher level of Precision than the other two methods; CP3 has an
obviously higher Recall and F-measure value than other methods
which means it has higher sensitivity for detecting foreground. In
addition, during the frames from 150 to 200, GAP and Sheikh's
KDE methods show clearly decreasing performance of Recall, as
the test video comes into a darker phase after the frame 150, and
the dynamic range of the intensity is compressed, as shown in
Fig. 9(d). Since the GAP method uses a fixed double-sided thresh-
old, it is more sensitive to changes in dynamic range than CP3,
which leads to more false negative detections (incomplete fore-
ground). The performance of Sheikh's KDE and GMM methods
show the weakness that they are sensitive to the rapid changes of
illumination while updating. In addition, we have to point out
another weakness of Sheikh's KDE method: its foreground model-
ing processing highly depends on the accuracy of foreground
detection of the latest frames. Once the detection fails, the false
foreground model will lead to unexpected results including large
areas of false positive pixels (noise) or false negative pixels
(incomplete foreground). Fig. 10 shows the qualitative results of

the four methods under high contrast, low contrast and rapid
changes of illumination, respectively. It is stressed that no mor-
phological operators like erosion/dilation were used in the pre-
sentation of these results. The above results indicate that, our
proposed method has a better illumination invariance compared
with the state of the art methods, even under sudden illumination
changes and a low contrast background.

The second dataset for testing indoor environments is the AIST-
INDOOR dataset (http://ssc-lab.com/� liang/CP3_project/AIST_IN
DOOR_DATASET.rar). It contains several indoor extreme condi-
tions: low contrast illumination, low texture, turning on lights and
an auto-door rapidly opening and shutting. The dataset AIST-
INDOOR includes total 300 frames for training and 4890 frames for
detection. The average Precision, Recall and F-measure of the four
methods are shown in Fig. 12. Fig. 11 shows four demo frames of
detection with CP3, GAP, Sheikh's KDE and GMM respectively.
Compared with other approaches, CP3 is not only insensitive to
varying illumination but also robust to reciprocating motion of the
auto-door.

Here, we would like to emphasize the differences between our
method and Sheikh's KDE method from Ref. [10] because both of
them belong to the spatial-dependence model. The most impor-
tant difference is the difference in their modeling mechanisms.
Sheikh's KDE method converts each pixel's intensity and location
into a feature vector, and then models a joint probability distribu-
tion of all the pixels on a feature space. The method is based on the
assumption that the pixels' correlation degree depends on the

Fig. 13. CP3 results of Wallflower dataset.
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spatial distance between them, (i.e. each observed pixel has higher
correlation with its neighbouring pixels), but ignores the localized
discrimination between pixels. Such a mechanism can deal well
with global illumination changes, but is not robust to local
illumination change, which can be clearly observed in the quali-
tative experimental results in Figs. 10 and 11. Compared with
Sheikh's method, our proposed background model avoids any
prior assumption of pixel's local correlation, but selects a group
of supporting pixels which can maintain a stable statistical
relationship with their target pixel. Such a mechanism is robust
under both global and local illumination changes.

The third dataset is Wallflower, which is introduced in the work
of Toyama et al. [19]. This dataset consists of seven video sequences,
each of which addresses a special canonical background subtraction
problem. We trained each video sequence using the frames specified
by the instruction files in the Wallflower dataset. Our results are
shown in Fig. 13. Compared with the results in [19], our method deals
with the illumination changes and background fluctuations well.
Note that some incomplete parts of the foreground exist mainly
because the dark colors of both foreground and background come
into similar intensities after covering them into gray-scale image.
When using a multi-channel colour detection, the performance
would be improved.

5.2. Work with different number of supporting pixels

To examine the detection performance of the proposed method
using a different number of supporting pixels, we use PETS20
01-dataset3 camera1 and calculate the mean value of Precision,
Recall and F-measure shown in Fig. 14(a). The corresponding
average runtime to process each frame is shown in Fig. 14(b).
The runtime is measured on a computer with a Intel Xeon 3.0 GHz
processor with a C language implement. From Fig. 14(a), we can
observe that K mainly affects Precision: when K¼1, Precision is
around 0.5. According to the definition of Precision, this result
means the number of false positive pixels (FP) and true positive
pixels (TP) are similar which indicates that one supporting
pixel QP

1 cannot provide robust detection. When K becomes larger,
Precision increases dramatically; and when K continues to grow
(larger than 9), Precision tends to be stable, which means there is a
small quantity of false positive pixels (FP). Fig. 14(a) also shows
that Recall changes little under different K, which indicates that
the completeness of the object could be preserved even K is small.
The results of the above quantitative analysis can also be observed
from the detection sample in Fig. 14(d–g). In addition, as shown in
Fig. 14(b), the runtime of detection linearly increase with K. In
conclusion, considering both the detection performance and

Fig. 14. Work with a different number of supporting pixels K. (a) Precision, Recall and F-measure under different K (to show the variation tendency clearly when K is small,
the horizontal axis is logarithmic.). (b) Average detection runtime of a frame under different K. (c) Frame #2706. (d–f) Detection results with K¼1, K¼5, K¼15, and K¼99,
respectively.
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computation cost discussed above, we set the number of support-
ing pixels K between 10 and 20 in practice.

5.3. Analysis of accelerated background modeling

We also use the accelerated version to carry out background
modeling with a sample interval from Λ¼ 2 to Λ¼ 5, and compare
its time consumption of background modeling and object detection
performance with Algorithm 1 shown in Table 1. The dataset is a high
resolution (1024�1024) surveillance video in a supermarket with 101
training samples, some detection samples are shown in Fig. 15. The
runtime are measured on a computer with a Intel Xeon 3.0 GHz
processor. From Table 1, we can observe that compared with the
original CP3, the time cost for background modeling of the accelerated

algorithm dramatically reduces even when only using a limited
sampling interval. For instance, when Λ¼ 5, the runtime reduced by
91.96%, while the Precision, Recall and F-measure only reduced by
5.85%, 4.56%, and 5.12%, respectively. The above three metrics can keep
high levels mainly because when the sampling interval is relative
small, there are still sufficient qualified supporting pixels to maintain

Fig. 15. Detection using CP3 and its accelerated algorithm.

Table 1
The comparison of CP3 and its accelerated version.

Interval Runtime (Sec.) Precision Recall F-measure

– 151.57 0.923 0.877 0.899
Λ¼ 2 47.02 0.920 0.857 0.887
Λ¼ 3 31.51 0.903 0.851 0.876
Λ¼ 4 15.73 0.887 0.844 0.865
Λ¼ 5 12.19 0.869 0.837 0.853
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Fig. 16. Precision, Recall and F-measure using the accelerated algorithm of CP3
model with the sampling intervals from 0 to 320.
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robust detection. Larger-range quantitative tests are shown in Fig. 16.
We can observe that when the sampling interval Λ continues to
increase, Precision, Recall and F-measure clearly decrease, and finally
tend to be stable at low levels. In summary, when using the
accelerated algorithm of CP3, it is suggested to firstly conduct a
preliminary work using a relative small sampling interval, which
would efficiently reduce the time cost of background modeling and
maintain a fairly good detection performance. In addition, an opti-
mized implementation of Algorithm 2 for object detection can process
about 17 fps using a frame size of 1024�1024.

6. Conclusions

In conclusion, CP3 builds a novel background model for object
detection based on co-occurrence pixel pairs. The model performs
robust detection under outdoor and indoor extreme environments.

The key contributions of the algorithm are as follows:

� Compared with independent pixel-wise methods, CP3 deter-
mines stable co-occurrence pixel pairs, instead of building
the parameterized/non-parametrized model for a single pixel.
These pixel pairs maintain a reliable background model, which
can be used to capture structural background motion and cope
with local and global illumination changes.

� As a spatial-dependence method, CP3 does not predefine any
local operator, subspace or block, and it provides an accurate
detection criterion even though the gray-scale dynamic range
is compressed under weak illumination.

We interpreted our method and conducted experiments using
gray-scale data, however, using color imagery is also an option for
object detection. The modification of CP3 for multi-channel use, such
as rgb, can be realized through vectorized extension of the basic unit
for a three-dimensional observation; for the Gaussian model of each
pixel pair, the associated mean value and variance evolve to a 3D
vector and a 3�3 covariance matrix respectively. In future work, we
will integrate CP3 into an object tracking framework.
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Appendix

K-means clustering for optimizing spatial distribution: Define a
spatial distance between P and Qn by dðP;QnÞ, and define a spatial
distance between different Qn by dðQn;Qn0 Þ, where n¼ 1;2;…;N
and nan0. There are different approaches for checking the
distance between two observed values, such as Euclidean distance,
Hamming distance or city-block distance. As a spatial distance
measurement, we used Euclidean distance. A set to represent the
local spatial distribution of P and Qn is ψðQnÞ ¼ dðP;QnÞ;

�
dðQn;Qn0 Þg.

(I) Initialize: Given random initial clustering centers Qp
kð0ÞAfQng;

k¼ 1;2;…;K , and one fixed clustering center of P, the total Kþ1
number of initial seed locations, the corresponding initial cluster
fψðQp

kÞ0g ¼Φ.
(II) Clustering: Assign each Qnðu0; v0Þ to a cluster with the closest

seed location:

fQP
kgη ¼ fQn : dðQn;Q

P
k ½η�ÞrdðQn;Q

P
k ½η�Þg;

where η is iteration times, and 8kak0, until Qn goes into exactly
one fQP

kgη.
(III) Updating centroid: The updated centroid of the cluster is

calculated by the mean locations:

QP
k ½ηþ1� ¼#�1 ∑

ðu0 ;v0 Þ
fQP

kgη;

where # is the number of QnAfQP
kgη. It is important to note that

the location of P without updating in step (III) also allows QnAfPg
to calculate dðP;QnÞ in step (II).
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